Air Pollution Essay Wikipedia En

For other uses, see Pollution (disambiguation).

For the academic journal, see Environmental Pollution (journal).

Pollution is the introduction of contaminants into the natural environment that cause adverse change.[1] Pollution can take the form of chemical substances or energy, such as noise, heat or light. Pollutants, the components of pollution, can be either foreign substances/energies or naturally occurring contaminants. Pollution is often classed as point source or nonpoint source pollution. In 2015, pollution killed 9 million people in the world.[2][3]

History

Air pollution has always accompanied civilizations. Pollution started from prehistoric times when man created the first fires. According to a 1983 article in the journal Science, "soot" found on ceilings of prehistoric caves provides ample evidence of the high levels of pollution that was associated with inadequate ventilation of open fires."[4] Metal forging appears to be a key turning point in the creation of significant air pollution levels outside the home. Core samples of glaciers in Greenland indicate increases in pollution associated with Greek, Roman and Chinese metal production,[5] but at that time the pollution was comparatively small and could be handled by nature.[citation needed]

Urban pollution

The burning of coal and wood, and the presence of many horses in concentrated areas made the cities the primary sources of pollution. The Industrial Revolution brought an infusion of untreated chemicals and wastes into local streams that served as the water supply. King Edward I of England banned the burning of sea-coal by proclamation in London in 1272, after its smoke became a problem.[6][7] But the fuel was so common in England that this earliest of names for it was acquired because it could be carted away from some shores by the wheelbarrow.

It was the industrial revolution that gave birth to environmental pollution as we know it today. London also recorded one of the earlier extreme cases of water quality problems with the Great Stink on the Thames of 1858, which led to construction of the London sewerage system soon afterward. Pollution issues escalated as population growth far exceeded view ability of neighborhoods to handle their waste problem. Reformers began to demand sewer systems, and clean water.[8]

In 1870, the sanitary conditions in Berlin were among the worst in Europe. August Bebel recalled conditions before a modern sewer system was built in the late 1870s:

"Waste-water from the houses collected in the gutters running alongside the curbs and emitted a truly fearsome smell. There were no public toilets in the streets or squares. Visitors, especially women, often became desperate when nature called. In the public buildings the sanitary facilities were unbelievably primitive....As a metropolis, Berlin did not emerge from a state of barbarism into civilization until after 1870."[9]

The primitive conditions were intolerable for a world national capital, and the Imperial German government brought in its scientists, engineers and urban planners to not only solve the deficiencies but to forge Berlin as the world's model city. A British expert in 1906 concluded that Berlin represented "the most complete application of science, order and method of public life," adding "it is a marvel of civic administration, the most modern and most perfectly organized city that there is."[10]

The emergence of great factories and consumption of immense quantities of coal gave rise to unprecedented air pollution and the large volume of industrial chemical discharges added to the growing load of untreated human waste. Chicago and Cincinnati were the first two American cities to enact laws ensuring cleaner air in 1881. Pollution became a major issue in the United States in the early twentieth century, as progressive reformers took issue with air pollution caused by coal burning, water pollution caused by bad sanitation, and street pollution caused by the 3 million horses who worked in American cities in 1900, generating large quantities of urine and manure. As historian Martin Melosi notes, The generation that first saw automobiles replacing the horses saw cars as "miracles of cleanliness.".[11] By the 1940s, however, automobile-caused smog was a major issue in Los Angeles.[12]

Other cities followed around the country until early in the 20th century, when the short lived Office of Air Pollution was created under the Department of the Interior. Extreme smog events were experienced by the cities of Los Angeles and Donora, Pennsylvania in the late 1940s, serving as another public reminder.[13] Air pollution would continue to be a problem in England, especially later during the industrial revolution, and extending into the recent past with the Great Smog of 1952.

Awareness of atmospheric pollution spread widely after World War II, with fears triggered by reports of radioactive fallout from atomic warfare and testing.[14] Then a non-nuclear event, The Great Smog of 1952 in London, killed at least 4000 people.[15] This prompted some of the first major modern environmental legislation, The Clean Air Act of 1956.

Pollution began to draw major public attention in the United States between the mid-1950s and early 1970s, when Congress passed the Noise Control Act, the Clean Air Act, the Clean Water Act and the National Environmental Policy Act.[16]

Severe incidents of pollution helped increase consciousness. PCB dumping in the Hudson River resulted in a ban by the EPA on consumption of its fish in 1974. Long-term dioxin contamination at Love Canal starting in 1947 became a national news story in 1978 and led to the Superfund legislation of 1980.[17] The pollution of industrial land gave rise to the name brownfield, a term now common in city planning.

The development of nuclear science introduced radioactive contamination, which can remain lethally radioactive for hundreds of thousands of years. Lake Karachay, named by the Worldwatch Institute as the "most polluted spot" on earth, served as a disposal site for the Soviet Union throughout the 1950s and 1960s. Chelyabinsk, Russia, is considered the "Most polluted place on the planet".[18]

Nuclear weapons continued to be tested in the Cold War, especially in the earlier stages of their development. The toll on the worst-affected populations and the growth since then in understanding about the critical threat to human health posed by radioactivity has also been a prohibitive complication associated with nuclear power. Though extreme care is practiced in that industry, the potential for disaster suggested by incidents such as those at Three Mile Island and Chernobyl pose a lingering specter of public mistrust. Worldwide publicity has been intense on those disasters.[19] Widespread support for test ban treaties has ended almost all nuclear testing in the atmosphere.[20]

International catastrophes such as the wreck of the Amoco Cadiz oil tanker off the coast of Brittany in 1978 and the Bhopal disaster in 1984 have demonstrated the universality of such events and the scale on which efforts to address them needed to engage. The borderless nature of atmosphere and oceans inevitably resulted in the implication of pollution on a planetary level with the issue of global warming. Most recently the term persistent organic pollutant (POP) has come to describe a group of chemicals such as PBDEs and PFCs among others. Though their effects remain somewhat less well understood owing to a lack of experimental data, they have been detected in various ecological habitats far removed from industrial activity such as the Arctic, demonstrating diffusion and bioaccumulation after only a relatively brief period of widespread use.

A much more recently discovered problem is the Great Pacific Garbage Patch, a huge concentration of plastics, chemical sludge and other debris which has been collected into a large area of the Pacific Ocean by the North Pacific Gyre. This is a less well known pollution problem than the others described above, but nonetheless has multiple and serious consequences such as increasing wildlife mortality, the spread of invasive species and human ingestion of toxic chemicals. Organizations such as 5 Gyres have researched the pollution and, along with artists like Marina DeBris, are working toward publicizing the issue.

Pollution introduced by light at night is becoming a global problem, more severe in urban centres, but nonetheless contaminating also large territories, far away from towns.[21]

Growing evidence of local and global pollution and an increasingly informed public over time have given rise to environmentalism and the environmental movement, which generally seek to limit human impact on the environment.

Forms of pollution

The major forms of pollution are listed below along with the particular contaminant relevant to each of them:

  • Light pollution: includes light trespass, over-illumination and astronomical interference.
  • Littering: the criminal throwing of inappropriate man-made objects, unremoved, onto public and private properties.
  • Noise pollution: which encompasses roadway noise, aircraft noise, industrial noise as well as high-intensity sonar.
  • Soil contamination occurs when chemicals are released by spill or underground leakage. Among the most significant soil contaminants are hydrocarbons, heavy metals, MTBE,[22]herbicides, pesticides and chlorinated hydrocarbons.
  • Radioactive contamination, resulting from 20th century activities in atomic physics, such as nuclear power generation and nuclear weapons research, manufacture and deployment. (See alpha emitters and actinides in the environment.)
  • Thermal pollution, is a temperature change in natural water bodies caused by human influence, such as use of water as coolant in a power plant.
  • Visual pollution, which can refer to the presence of overhead power lines, motorway billboards, scarred landforms (as from strip mining), open storage of trash, municipal solid waste or space debris.
  • Water pollution, by the discharge of wastewater from commercial and industrial waste (intentionally or through spills) into surface waters; discharges of untreated domestic sewage, and chemical contaminants, such as chlorine, from treated sewage; release of waste and contaminants into surface runoff flowing to surface waters (including urban runoff and agricultural runoff, which may contain chemical fertilizers and pesticides); waste disposal and leaching into groundwater; eutrophication and littering.
  • Plastic pollution: involves the accumulation of plastic products in the environment that adversely affects wildlife, wildlife habitat, or humans.

Pollutants

Main article: Pollutant

A pollutant is a waste material that pollutes air, water or soil. Three factors determine the severity of a pollutant: its chemical nature, the concentration and the persistence.

Cost of pollution

Pollution has cost.[23][24][25] Manufacturing activities that cause air pollution impose health and clean-up costs on the whole of society, whereas the neighbors of an individual who chooses to fire-proof his home may benefit from a reduced risk of a fire spreading to their own homes. A manufacturing activity that causes air pollution is an example of a negative externality in production. A negative externality in production occurs “when a firm’s production reduces the well-being of others who are not compensated by the firm."[26] For example, if a laundry firm exists near a polluting steel manufacturing firm, there will be increased costs for the laundry firm because of the dirt and smoke produced by the steel manufacturing firm.[27] If external costs exist, such as those created by pollution, the manufacturer will choose to produce more of the product than would be produced if the manufacturer were required to pay all associated environmental costs. Because responsibility or consequence for self-directed action lies partly outside the self, an element of externalization is involved. If there are external benefits, such as in public safety, less of the good may be produced than would be the case if the producer were to receive payment for the external benefits to others. However, goods and services that involve negative externalities in production, such as those that produce pollution, tend to be over-produced and underpriced since the externality is not being priced into the market.[26]

Pollution can also create costs for the firms producing the pollution. Sometimes firms choose, or are forced by regulation, to reduce the amount of pollution that they are producing. The associated costs of doing this are called abatement costs, or marginal abatement costs if measured by each additional unit.[28] In 2005 pollution abatement capital expenditures and operating costs in the US amounted to nearly $27 million.[29]

Socially Optimal Level of Pollution

Society derives some indirect utility from pollution, otherwise there would be no incentive to pollute. This utility comes from the consumption of goods and services that create pollution. Therefore, it is important that policymakers attempt to balance these indirect benefits with the costs of pollution in order to achieve an efficient outcome.[30]

It is possible to use environmental economics to determine which level of pollution is deemed the social optimum. For economists, pollution is an “external cost and occurs only when one or more individuals suffer a loss of welfare,” however, there exists a socially optimal level of pollution at which welfare is maximized.[31] This is because consumers derive utility from the good or service manufactured, which will outweigh the social cost of pollution until a certain point. At this point the damage of one extra unit of pollution to society, the marginal cost of pollution, is exactly equal to the marginal benefit of consuming one more unit of the good or service.[32]

In markets with pollution, or other negative externalities in production, the free market equilibrium will not account for the costs of pollution on society. If the social costs of pollution are higher than the private costs incurred by the firm, then the true supply curve will be higher. The point at which the social marginal cost and market demand intersect gives the socially optimal level of pollution. At this point, the quantity will be lower and the price will be higher in comparison to the free market equilibrium.[32] Therefore, the free market outcome could be considered a market failure because it “does not maximize efficiency”.[26]

This model can be used as a basis to evaluate different methods of internalizing the externality. Some examples include tariffs, a carbon tax and cap and trade systems.

Sources and causes

Air pollution comes from both natural and human-made (anthropogenic) sources. However, globally human-made pollutants from combustion, construction, mining, agriculture and warfare are increasingly significant in the air pollution equation.[33]

Motor vehicle emissions are one of the leading causes of air pollution.[34][35][36]China, United States, Russia, India[37]Mexico, and Japan are the world leaders in air pollution emissions. Principal stationary pollution sources include chemical plants, coal-fired power plants, oil refineries,[38]petrochemical plants, nuclear waste disposal activity, incinerators, large livestock farms (dairy cows, pigs, poultry, etc.), PVC factories, metals production factories, plastics factories, and other heavy industry. Agricultural air pollution comes from contemporary practices which include clear felling and burning of natural vegetation as well as spraying of pesticides and herbicides[39]

About 400 million metric tons of hazardous wastes are generated each year.[40] The United States alone produces about 250 million metric tons.[41] Americans constitute less than 5% of the world's population, but produce roughly 25% of the world’s CO2,[42] and generate approximately 30% of world’s waste.[43][44] In 2007, China has overtaken the United States as the world's biggest producer of CO2,[45] while still far behind based on per capita pollution - ranked 78th among the world's nations.[46]

In February 2007, a report by the Intergovernmental Panel on Climate Change (IPCC), representing the work of 2,500 scientists, economists, and policymakers from more than 120 countries, said that humans have been the primary cause of global warming since 1950. Humans have ways to cut greenhouse gas emissions and avoid the consequences of global warming, a major climate report concluded. But to change the climate, the transition from fossil fuels like coal and oil needs to occur within decades, according to the final report this year from the UN's Intergovernmental Panel on Climate Change (IPCC).[47]

Some of the more common soil contaminants are chlorinated hydrocarbons (CFH), heavy metals (such as chromium, cadmium–found in rechargeable batteries, and lead–found in lead paint, aviation fuel and still in some countries, gasoline), MTBE, zinc, arsenic and benzene. In 2001 a series of press reports culminating in a book called Fateful Harvest unveiled a widespread practice of recycling industrial byproducts into fertilizer, resulting in the contamination of the soil with various metals. Ordinary municipal landfills are the source of many chemical substances entering the soil environment (and often groundwater), emanating from the wide variety of refuse accepted, especially substances illegally discarded there, or from pre-1970 landfills that may have been subject to little control in the U.S. or EU. There have also been some unusual releases of polychlorinated dibenzodioxins, commonly called dioxins for simplicity, such as TCDD.[48]

Pollution can also be the consequence of a natural disaster. For example, hurricanes often involve water contamination from sewage, and petrochemical spills from ruptured boats or automobiles. Larger scale and environmental damage is not uncommon when coastal oil rigs or refineries are involved. Some sources of pollution, such as nuclear power plants or oil tankers, can produce widespread and potentially hazardous releases when accidents occur.

In the case of noise pollution the dominant source class is the motor vehicle, producing about ninety percent of all unwanted noise worldwide.

Effects

Human health

Further information: Soil pollution § Health effects, Toxic hotspots, and List of pollution-related diseases

Adverse air quality can kill many organisms including humans. Ozone pollution can cause respiratory disease, cardiovascular disease, throat inflammation, chest pain, and congestion. Water pollution causes approximately 14,000 deaths per day, mostly due to contamination of drinking water by untreated sewage in developing countries. An estimated 500 million Indians have no access to a proper toilet,[52][53] Over ten million people in India fell ill with waterborne illnesses in 2013, and 1,535 people died, most of them children.[54] Nearly 500 million Chinese lack access to safe drinking water.[55] A 2010 analysis estimated that 1.2 million people died prematurely each year in China because of air pollution.[56] The WHO estimated in 2007 that air pollution causes half a million deaths per year in India.[57] Studies have estimated that the number of people killed annually in the United States could be over 50,000.[58]

Oil spills can cause skin irritations and rashes. Noise pollution induces hearing loss, high blood pressure, stress, and sleep disturbance. Mercury has been linked to developmental deficits in children and neurologic symptoms. Older people are majorly exposed to diseases induced by air pollution. Those with heart or lung disorders are at additional risk. Children and infants are also at serious risk. Lead and other heavy metals have been shown to cause neurological problems. Chemical and radioactive substances can causecancer and as well asbirth defects.

An October 2017 study by the Lancet Commission on Pollution and Health found that global pollution, specifically toxic air, water, soils and workplaces, kill nine million people annually, which is triple the number of deaths caused by AIDS, tuberculosis and malaria combined, and 15 times higher than deaths caused by wars and other forms of human violence.[59] The study concluded that "pollution is one of the great existential challenges of the Anthropocene era. Pollution endangers the stability of the Earth’s support systems and threatens the continuing survival of human societies."[3]

Environment

Pollution has been found to be present widely in the environment. There are a number of effects of this:

Environmental health information

The Toxicology and Environmental Health Information Program (TEHIP)[60] at the United States National Library of Medicine (NLM) maintains a comprehensive toxicology and environmental health web site that includes access to resources produced by TEHIP and by other government agencies and organizations. This web site includes links to databases, bibliographies, tutorials, and other scientific and consumer-oriented resources. TEHIP also is responsible for the Toxicology Data Network (TOXNET)[61] an integrated system of toxicology and environmental health databases that are available free of charge on the web.

TOXMAP is a Geographic Information System (GIS) that is part of TOXNET. TOXMAP uses maps of the United States to help users visually explore data from the United States Environmental Protection Agency's (EPA) Toxics Release Inventory and Superfund Basic Research Programs.

Worker productivity

A number of studies show that pollution has an adverse effect on the productivity of both indoor and outdoor workers.[62][63][64]

Regulation and monitoring

Main article: Regulation and monitoring of pollution

To protect the environment from the adverse effects of pollution, many nations worldwide have enacted legislation to regulate various types of pollution as well as to mitigate the adverse effects of pollution.

Pollution control

Pollution control is a term used in environmental management. It means the control of emissions and effluents into air, water or soil. Without pollution control, the waste products from overconsumption, heating, agriculture, mining, manufacturing, transportation and other human activities, whether they accumulate or disperse, will degrade the environment. In the hierarchy of controls, pollution prevention and waste minimization are more desirable than pollution control. In the field of land development, low impact development is a similar technique for the prevention of urban runoff.

Practices

Pollution control devices

Perspectives

The earliest precursor of pollution generated by life forms would have been a natural function of their existence. The attendant consequences on viability and population levels fell within the sphere of natural selection. These would have included the demise of a population locally or ultimately, species extinction. Processes that were untenable would have resulted in a new balance brought about by changes and adaptations. At the extremes, for any form of life, consideration of pollution is superseded by that of survival.

For humankind, the factor of technology is a distinguishing and critical consideration, both as an enabler and an additional source of byproducts. Short of survival, human concerns include the range from quality of life to health hazards. Since science holds experimental demonstration to be definitive, modern treatment of toxicity or environmental harm involves defining a level at which an effect is observable. Common examples of fields where practical measurement is crucial include automobile emissions control, industrial exposure (e.g. Occupational Safety and Health Administration (OSHA) PELs), toxicology (e.g. LD50), and medicine (e.g. medication and radiation doses).

"The solution to pollution is dilution", is a dictum which summarizes a traditional approach to pollution management whereby sufficiently diluted pollution is not harmful.[66][67] It is well-suited to some other modern, locally scoped applications such as laboratory safety procedure and hazardous material release emergency management. But it assumes that the dilutant is in virtually unlimited supply for the application or that resulting dilutions are acceptable in all cases.

Such simple treatment for environmental pollution on a wider scale might have had greater merit in earlier centuries when physical survival was often the highest imperative, human population and densities were lower, technologies were simpler and their byproducts more benign. But these are often no longer the case. Furthermore, advances have enabled measurement of concentrations not possible before. The use of statistical methods in evaluating outcomes has given currency to the principle of probable harm in cases where assessment is warranted but resorting to deterministic models is impractical or infeasible. In addition, consideration of the environment beyond direct impact on human beings has gained prominence.

Yet in the absence of a superseding principle, this older approach predominates practices throughout the world. It is the basis by which to gauge concentrations of effluent for legal release, exceeding which penalties are assessed or restrictions applied. One such superseding principle is contained in modern hazardous waste laws in developed countries, as the process of diluting hazardous waste to make it non-hazardous is usually a regulated treatment process.[68] Migration from pollution dilution to elimination in many cases can be confronted by challenging economical and technological barriers.

Greenhouse gases and global warming

Main article: Global warming

Carbon dioxide, while vital for photosynthesis, is sometimes referred to as pollution, because raised levels of the gas in the atmosphere are affecting the Earth's climate. Disruption of the environment can also highlight the connection between areas of pollution that would normally be classified separately, such as those of water and air. Recent studies have investigated the potential for long-term rising levels of atmospheric carbon dioxide to cause slight but critical increases in the acidity of ocean waters, and the possible effects of this on marine ecosystems.

Most polluting industries

The Pure Earth, an international non-for-profit organization dedicated to eliminating life-threatening pollution in the developing world, issues an annual list of some of the world's most polluting industries.[71]

World’s worst polluted places

The Pure Earth issues an annual list of some of the world's worst polluted places.[72]

  • Agbogbloshie, Ghana
  • Chernobyl*, Ukraine
  • Citarum River, Indonesia
  • Dzershinsk*, Russia
  • Hazaribagh, Bangladesh
  • Kabwe*, Zambia
  • Kalimantan, Indonesia
  • Matanza Riachuelo, Argentina
  • Niger River Delta, Nigeria
  • Norilsk*, Russia

See also

References

  1. ^"Pollution - Definition from the Merriam-Webster Online Dictionary". Merriam-webster.com. 2010-08-13. Retrieved 2010-08-26. 
  2. ^Beil, Laura (15 November 2017). "Pollution killed 9 million people in 2015". Sciencenews.org. Retrieved 1 December 2017. 
  3. ^ abCarrington, Damian (October 20, 2017). "Global pollution kills 9m a year and threatens 'survival of human societies'". The Guardian. Retrieved October 20, 2017. 
  4. ^Spengler, John D.; Sexton, K. A. (1983). "Indoor Air Pollution: A Public Health Perspective". Science. 221 (4605): 9–17 [p. 9]. doi:10.1126/science.6857273. 
  5. ^Hong, Sungmin; et al. (1996). "History of Ancient Copper Smelting Pollution During Roman and Medieval Times Recorded in Greenland Ice". Science. 272 (5259): 246–249 [p. 248]. doi:10.1126/science.272.5259.246. 
  6. ^David Urbinato (Summer 1994). "London's Historic "Pea-Soupers"". United States Environmental Protection Agency. Retrieved 2006-08-02. 
  7. ^"Deadly Smog". PBS. 2003-01-17. Retrieved 2006-08-02. 
  8. ^Lee Jackson, Dirty Old London: The Victorian Fight Against Filth (2014)
  9. ^Cited in David Clay Large, Berlin (2000) pp 17-18
  10. ^Hugh Chisholm (1910). The Encyclopædia Britannica: A Dictionary of Arts, Sciences, Literature and General Information. Encyclopædia Britannica, 11th edition. p. 786. 
  11. ^Patrick Allitt, A Climate of Crisis: America in the Age of Environmentalism (2014) p 206
  12. ^Jeffry M. Diefendorf; Kurkpatrick Dorsey (2009). City, Country, Empire: Landscapes in Environmental History. University of Pittsburgh Press. pp. 44–49. 
  13. ^Fleming, James R.; Knorr, Bethany R. "History of the Clean Air Act". American Meteorological Society. Retrieved 2006-02-14. 
  14. ^Patrick Allitt, A Climate of Crisis: America in the Age of Environmentalism (2014) pp 15-21
  15. ^1952: London fog clears after days of chaos (BBC News)
  16. ^John Tarantino. "Environmental Issues". The Environmental Blog. Archived from the original on 2012-01-11. Retrieved 2011-12-10. 
  17. ^Judith A. Layzer, "Love Canal: hazardous waste and politics of fear" in Layzer, The Environmental Case (CQ Press, 2012) pp: 56-82.
  18. ^Lenssen, "Nuclear Waste: The Problem that Won't Go Away", Worldwatch Institute, Washington, D.C., 1991: 15.
  19. ^Friedman, Sharon M. (2011). "Three Mile Island, Chernobyl, and Fukushima: An analysis of traditional and new media coverage of nuclear accidents and radiation". Bulletin of the atomic scientists. 67 (5): 55–65. doi:10.1177/0096340211421587.
Air pollution in the US, 1973
Blue drain and yellow fish symbol used by the UK Environment Agency to raise awareness of the ecological impacts of contaminating surface drainage.
A visual comparison of the free market and socially optimal outcomes.
Air pollution produced by ships may alter clouds, affecting global temperatures.
An industrial area, with a power plant, south of Yangzhou's downtown, China
Overview of main health effects on humans from some common types of pollution.[49][50][51]
A Mobile Pollution Check Vehicle in India.
Historical and projected CO2 emissions by country (as of 2005).
Source: Energy Information Administration.[69][70]

"Bad air quality" and "Air quality" redirect here. For the obsolete medical theory, see Bad air. For the measure of how polluted the air is, see Air quality index. For the properties of air, see Qualities of air.

Air pollution occurs when harmful or excessive quantities of substances including gases, particulates, and biological molecules are introduced into Earth's atmosphere. It may cause diseases, allergies and also death of humans; it may also cause harm to other living organisms such as animals and food crops, and may damage the natural or built environment. Human activity and natural processes can both generate air pollution.

Indoor air pollution and poor urban air quality are listed as two of the world's worst toxic pollution problems in the 2008 Blacksmith Institute World's Worst Polluted Places report.[1] According to the 2014 World Health Organization report, air pollution in 2012 caused the deaths of around 7 million people worldwide,[2] an estimate roughly echoed by one from the International Energy Agency.[3][4]

Pollutants[edit]

Main articles: Pollutant and Greenhouse gas

An air pollutant is a substance in the air that can have adverse effects on humans and the ecosystem. The substance can be solid particles, liquid droplets, or gases. A pollutant can be of natural origin or man-made. Pollutants are classified as primary or secondary. Primary pollutants are usually produced from a process, such as ash from a volcanic eruption. Other examples include carbon monoxide gas from motor vehicle exhaust, or the sulfur dioxide released from factories. Secondary pollutants are not emitted directly. Rather, they form in the air when primary pollutants react or interact. Ground level ozone is a prominent example of a secondary pollutant. Some pollutants may be both primary and secondary: they are both emitted directly and formed from other primary pollutants.

Substances emitted into the atmosphere by human activity include:

  • Carbon dioxide (CO2) - Because of its role as a greenhouse gas it has been described as "the leading pollutant"[5] and "the worst climate pollution".[6] Carbon dioxide is a natural component of the atmosphere, essential for plant life and given off by the human respiratory system.[7] This question of terminology has practical effects, for example as determining whether the U.S. Clean Air Act is deemed to regulate CO2 emissions.[8] CO2 currently forms about 405 parts per million (ppm) of earth's atmosphere, compared to about 280 ppm in pre-industrial times,[9] and billions of metric tons of CO2 are emitted annually by burning of fossil fuels.[10] CO2 increase in earth's atmosphere has been accelerating.[11]
  • Sulfur oxides (SOx) - particularly sulfur dioxide, a chemical compound with the formula SO2. SO2 is produced by volcanoes and in various industrial processes. Coal and petroleum often contain sulfur compounds, and their combustion generates sulfur dioxide. Further oxidation of SO2, usually in the presence of a catalyst such as NO2, forms H2SO4, and thus acid rain.[2] This is one of the causes for concern over the environmental impact of the use of these fuels as power sources.
  • Nitrogen oxides (NOx) - Nitrogen oxides, particularly nitrogen dioxide, are expelled from high temperature combustion, and are also produced during thunderstorms by electric discharge. They can be seen as a brown haze dome above or a plume downwind of cities. Nitrogen dioxide is a chemical compound with the formula NO2. It is one of several nitrogen oxides. One of the most prominent air pollutants, this reddish-brown toxic gas has a characteristic sharp, biting odor.
  • Carbon monoxide (CO) - CO is a colorless, odorless, toxic yet non-irritating gas. It is a product of combustion of fuel such as natural gas, coal or wood. Vehicular exhaust contributes to the majority of carbon monoxide let into our atmosphere. It creates a smog type formation in the air that has been linked to many lung diseases and disruptions to the natural environment and animals. In 2013, more than half of the carbon monoxide emitted into our atmosphere was from vehicle traffic and burning one gallon of gas will often emit over 20 pounds of carbon monoxide into the air.[12]
  • Volatile organic compounds (VOC) - VOCs are a well-known outdoor air pollutant. They are categorized as either methane (CH4) or non-methane (NMVOCs). Methane is an extremely efficient greenhouse gas which contributes to enhanced global warming. Other hydrocarbon VOCs are also significant greenhouse gases because of their role in creating ozone and prolonging the life of methane in the atmosphere. This effect varies depending on local air quality. The aromatic NMVOCs benzene, toluene and xylene are suspected carcinogens and may lead to leukemia with prolonged exposure. 1,3-butadiene is another dangerous compound often associated with industrial use.
  • Particulates, alternatively referred to as particulate matter (PM), atmospheric particulate matter, or fine particles, are tiny particles of solid or liquid suspended in a gas. In contrast, aerosol refers to combined particles and gas. Some particulates occur naturally, originating from volcanoes, dust storms, forest and grassland fires, living vegetation, and sea spray. Human activities, such as the burning of fossil fuels in vehicles, power plants and various industrial processes also generate significant amounts of aerosols. Averaged worldwide, anthropogenic aerosols—those made by human activities—currently account for approximately 10 percent of our atmosphere. Increased levels of fine particles in the air are linked to health hazards such as heart disease,[13] altered lung function and lung cancer. Particulates are related to respiratory infections and can be particularly harmful to those already suffering from conditions like asthma.[14]
  • Persistent free radicals connected to airborne fine particles are linked to cardiopulmonary disease.[15][16]
  • Toxic metals, such as lead and mercury, especially their compounds.
  • Chlorofluorocarbons (CFCs) - harmful to the ozone layer; emitted from products are currently banned from use. These are gases which are released from air conditioners, refrigerators, aerosol sprays, etc. On release into the air, CFCs rise to the stratosphere. Here they come in contact with other gases and damage the ozone layer. This allows harmful ultraviolet rays to reach the earth's surface. This can lead to skin cancer, eye disease and can even cause damage to plants.
  • Ammonia (NH3) - emitted from agricultural processes. Ammonia is a compound with the formula NH3. It is normally encountered as a gas with a characteristic pungent odor. Ammonia contributes significantly to the nutritional needs of terrestrial organisms by serving as a precursor to foodstuffs and fertilizers. Ammonia, either directly or indirectly, is also a building block for the synthesis of many pharmaceuticals. Although in wide use, ammonia is both caustic and hazardous. In the atmosphere, ammonia reacts with oxides of nitrogen and sulfur to form secondary particles.[17]
  • Odours — such as from garbage, sewage, and industrial processes
  • Radioactive pollutants - produced by nuclear explosions, nuclear events, war explosives, and natural processes such as the radioactive decay of radon.

Secondary pollutants include:

  • Particulates created from gaseous primary pollutants and compounds in photochemical smog. Smog is a kind of air pollution. Classic smog results from large amounts of coal burning in an area caused by a mixture of smoke and sulfur dioxide. Modern smog does not usually come from coal but from vehicular and industrial emissions that are acted on in the atmosphere by ultraviolet light from the sun to form secondary pollutants that also combine with the primary emissions to form photochemical smog.
  • Ground level ozone (O3) formed from NOx and VOCs. Ozone (O3) is a key constituent of the troposphere. It is also an important constituent of certain regions of the stratosphere commonly known as the Ozone layer. Photochemical and chemical reactions involving it drive many of the chemical processes that occur in the atmosphere by day and by night. At abnormally high concentrations brought about by human activities (largely the combustion of fossil fuel), it is a pollutant, and a constituent of smog.
  • Peroxyacetyl nitrate (C2H3NO5) - similarly formed from NOx and VOCs.

Minor air pollutants include:

Persistent organic pollutants (POPs) are organic compounds that are resistant to environmental degradation through chemical, biological, and photolytic processes. Because of this, they have been observed to persist in the environment, to be capable of long-range transport, bioaccumulate in human and animal tissue, biomagnify in food chains, and to have potentially significant impacts on human health and the environment.

Sources[edit]

There are various locations, activities or factors which are responsible for releasing pollutants into the atmosphere. These sources can be classified into two major categories.

Anthropogenic (man-made) sources[edit]

These are mostly related to the burning of multiple types of fuel.

  • Stationary sources include smoke stacks of fossil fuel power stations (see for example environmental impact of the coal industry), manufacturing facilities (factories) and waste incinerators, as well as furnaces and other types of fuel-burning heating devices. In developing and poor countries, traditional biomass burning is the major source of air pollutants; traditional biomass includes wood, crop waste and dung.[18][19]
  • Mobile sources include motor vehicles, marine vessels, and aircraft.
  • Controlled burn practices in agriculture and forest management. Controlled or prescribed burning is a technique sometimes used in forest management, farming, prairie restoration or greenhouse gas abatement. Fire is a natural part of both forest and grassland ecology and controlled fire can be a tool for foresters. Controlled burning stimulates the germination of some desirable forest trees, thus renewing the forest.
  • Fumes from paint, hair spray, varnish, aerosol sprays and other solvents
  • Waste deposition in landfills, which generate methane. Methane is highly flammable and may form explosive mixtures with air. Methane is also an asphyxiant and may displace oxygen in an enclosed space. Asphyxia or suffocation may result if the oxygen concentration is reduced to below 19.5% by displacement.
  • Military resources, such as nuclear weapons, toxic gases, germ warfare and rocketry.
  • Fertilized farmland may be a major source of nitrogen oxides.[20]

Natural sources[edit]

  • Dust from natural sources, usually large areas of land with little or no vegetation
  • Methane, emitted by the digestion of food by animals, for example cattle
  • Radon gas from radioactive decay within the Earth's crust. Radon is a colorless, odorless, naturally occurring, radioactive noble gas that is formed from the decay of radium. It is considered to be a health hazard. Radon gas from natural sources can accumulate in buildings, especially in confined areas such as the basement and it is the second most frequent cause of lung cancer, after cigarette smoking.
  • Smoke and carbon monoxide from wildfires
  • Vegetation, in some regions, emits environmentally significant amounts of Volatile organic compounds (VOCs) on warmer days. These VOCs react with primary anthropogenic pollutants—specifically, NOx, SO2, and anthropogenic organic carbon compounds — to produce a seasonal haze of secondary pollutants.[21] Black gum, poplar, oak and willow are some examples of vegetation that can produce abundant VOCs. The VOC production from these species result in ozone levels up to eight times higher than the low-impact tree species.[22]
  • Volcanic activity, which produces sulfur, chlorine, and ash particulates

Emission factors[edit]

Main article: AP 42 Compilation of Air Pollutant Emission Factors

Air pollutant emission factors are reported representative values that attempt to relate the quantity of a pollutant released to the ambient air with an activity associated with the release of that pollutant. These factors are usually expressed as the weight of pollutant divided by a unit weight, volume, distance, or duration of the activity emitting the pollutant (e.g., kilograms of particulate emitted per tonne of coal burned). Such factors facilitate estimation of emissions from various sources of air pollution. In most cases, these factors are simply averages of all available data of acceptable quality, and are generally assumed to be representative of long-term averages.

There are 12 compounds in the list of persistent organic pollutants. Dioxins and furans are two of them and intentionally created by combustion of organics, like open burning of plastics. These compounds are also endocrine disruptors and can mutate the human genes.

The United States Environmental Protection Agency has published a compilation of air pollutant emission factors for a wide range of industrial sources.[23] The United Kingdom, Australia, Canada and many other countries have published similar compilations, as well as the European Environment Agency.[24][25][26][27]

Exposure[edit]

Air pollution risk is a function of the hazard of the pollutant and the exposure to that pollutant. Air pollution exposure can be expressed for an individual, for certain groups (e.g. neighborhoods or children living in a country), or for entire populations. For example, one may want to calculate the exposure to a hazardous air pollutant for a geographic area, which includes the various microenvironments and age groups. This can be calculated[28] as an inhalation exposure. This would account for daily exposure in various settings (e.g. different indoor micro-environments and outdoor locations). The exposure needs to include different age and other demographic groups, especially infants, children, pregnant women and other sensitive subpopulations. The exposure to an air pollutant must integrate the concentrations of the air pollutant with respect to the time spent in each setting and the respective inhalation rates for each subgroup for each specific time that the subgroup is in the setting and engaged in particular activities (playing, cooking, reading, working, etc.). For example, a small child's inhalation rate will be less than that of an adult. A child engaged in vigorous exercise will have a higher respiration rate than the same child in a sedentary activity. The daily exposure, then, needs to reflect the time spent in each micro-environmental setting and the type of activities in these settings. The air pollutant concentration in each microactivity/microenvironmental setting is summed to indicate the exposure.[28]

Indoor air quality (IAQ)[edit]

Main article: Indoor air quality

A lack of ventilation indoors concentrates air pollution where people often spend the majority of their time. Radon (Rn) gas, a carcinogen, is exuded from the Earth in certain locations and trapped inside houses. Building materials including carpeting and plywood emit formaldehyde (H2CO) gas. Paint and solvents give off volatile organic compounds (VOCs) as they dry. Lead paint can degenerate into dust and be inhaled. Intentional air pollution is introduced with the use of air fresheners, incense, and other scented items. Controlled wood fires in stoves and fireplaces can add significant amounts of smoke particulates into the air, inside and out.[29] Indoor pollution fatalities may be caused by using pesticides and other chemical sprays indoors without proper ventilation.

Carbon monoxide poisoning and fatalities are often caused by faulty vents and chimneys, or by the burning of charcoal indoors or in a confined space, such as a tent.[30] Chronic carbon monoxide poisoning can result even from poorly-adjusted pilot lights. Traps are built into all domestic plumbing to keep sewer gas and hydrogen sulfide, out of interiors. Clothing emits tetrachloroethylene, or other dry cleaning fluids, for days after dry cleaning.

Though its use has now been banned in many countries, the extensive use of asbestos in industrial and domestic environments in the past has left a potentially very dangerous material in many localities. Asbestosis is a chronic inflammatory medical condition affecting the tissue of the lungs. It occurs after long-term, heavy exposure to asbestos from asbestos-containing materials in structures. Sufferers have severe dyspnea (shortness of breath) and are at an increased risk regarding several different types of lung cancer. As clear explanations are not always stressed in non-technical literature, care should be taken to distinguish between several forms of relevant diseases. According to the World Health Organisation (WHO), these may defined as; asbestosis, lung cancer, and Peritoneal Mesothelioma (generally a very rare form of cancer, when more widespread it is almost always associated with prolonged exposure to asbestos).

Biological sources of air pollution are also found indoors, as gases and airborne particulates. Pets produce dander, people produce dust from minute skin flakes and decomposed hair, dust mites in bedding, carpeting and furniture produce enzymes and micrometre-sized fecal droppings, inhabitants emit methane, mold forms on walls and generates mycotoxins and spores, air conditioning systems can incubate Legionnaires' disease and mold, and houseplants, soil and surrounding gardens can produce pollen, dust, and mold. Indoors, the lack of air circulation allows these airborne pollutants to accumulate more than they would otherwise occur in nature.

Health effects[edit]

See also: Neuroplastic effects of pollution

Air pollution is a significant risk factor for a number of pollution-related diseases and health conditions including respiratory infections, heart disease, COPD, stroke and lung cancer.[2] The health effects caused by air pollution may include difficulty in breathing, wheezing, coughing, asthma and worsening of existing respiratory and cardiac conditions. These effects can result in increased medication use, increased doctor or emergency room visits, more hospital admissions and premature death. The human health effects of poor air quality are far reaching, but principally affect the body's respiratory system and the cardiovascular system. Individual reactions to air pollutants depend on the type of pollutant a person is exposed to, the degree of exposure, and the individual's health status and genetics.[28] The most common sources of air pollution include particulates, ozone, nitrogen dioxide, and sulfur dioxide. Children aged less than five years that live in developing countries are the most vulnerable population in terms of total deaths attributable to indoor and outdoor air pollution.[31]

Mortality[edit]

The World Health Organization estimated in 2014 that every year air pollution causes the premature death of some 7 million people worldwide.[2] India has the highest death rate due to air pollution.[32] India also has more deaths from asthma than any other nation according to the World Health Organization. In December 2013 air pollution was estimated to kill 500,000 people in China each year.[33] There is a positive correlation between pneumonia-related deaths and air pollution from motor vehicle emissions.[34]

Annual premature European deaths caused by air pollution are estimated at 430,000.[35] An important cause of these deaths is nitrogen dioxide and other nitrogen oxides (NOx) emitted by road vehicles.[35] In a 2015 consultation document the UK government disclosed that nitrogen dioxide is responsible for 23,500 premature UK deaths per annum.[36] Across the European Union, air pollution is estimated to reduce life expectancy by almost nine months.[37] Causes of deaths include strokes, heart disease, COPD, lung cancer, and lung infections.[2]

Urban outdoor air pollution is estimated to cause 1.3 million deaths worldwide per year. Children are particularly at risk due to the immaturity of their respiratory organ systems.[38]

The US EPA estimated in 2004 that a proposed set of changes in diesel engine technology (Tier 2) could result in 12,000 fewer premature mortalities, 15,000 fewer heart attacks, 6,000 fewer emergency room visits by children with asthma, and 8,900 fewer respiratory-related hospital admissions each year in the United States.[39]

The US EPA has estimated that limiting ground-level ozone concentration to 65 parts per billion, would avert 1,700 to 5,100 premature deaths nationwide in 2020 compared with the 75-ppb standard. The agency projected the more protective standard would also prevent an additional 26,000 cases of aggravated asthma, and more than a million cases of missed work or school.[40][41] Following this assessment, the EPA acted to protect public health by lowering the National Ambient Air Quality Standards (NAAQS) for ground-level ozone to 70 parts per billion (ppb).[42]

A new economic study of the health impacts and associated costs of air pollution in the Los Angeles Basin and San Joaquin Valley of Southern California shows that more than 3,800 people die prematurely (approximately 14 years earlier than normal) each year because air pollution levels violate federal standards. The number of annual premature deaths is considerably higher than the fatalities related to auto collisions in the same area, which average fewer than 2,000 per year.[43][44][45]

Diesel exhaust (DE) is a major contributor to combustion-derived particulate matter air pollution. In several human experimental studies, using a well-validated exposure chamber setup, DE has been linked to acute vascular dysfunction and increased thrombus formation.[46][47]

The mechanisms linking air pollution to increased cardiovascular mortality are uncertain, but probably include pulmonary and systemic inflammation.[48]

Cardiovascular disease[edit]

A 2007 review of evidence found ambient air pollution exposure is a risk factor correlating with increased total mortality from cardiovascular events (range: 12% to 14% per 10 microg/m3 increase).[49]

Air pollution is also emerging as a risk factor for stroke, particularly in developing countries where pollutant levels are highest.[50] A 2007 study found that in women, air pollution is not associated with hemorrhagic but with ischemic stroke.[51] Air pollution was also found to be associated with increased incidence and mortality from coronary stroke in a cohort study in 2011.[52] Associations are believed to be causal and effects may be mediated by vasoconstriction, low-grade inflammation and atherosclerosis[53] Other mechanisms such as autonomic nervous system imbalance have also been suggested.[54][55]

Lung disease[edit]

Research has demonstrated increased risk of developing asthma[56] and COPD[57] from increased exposure to traffic-related air pollution. Additionally, air pollution has been associated with increased hospitalization and mortality from asthma and COPD.[58][59]Chronic obstructive pulmonary disease (COPD) includes diseases such as chronic bronchitis and emphysema.[60]

A study conducted in 1960-1961 in the wake of the Great Smog of 1952 compared 293 London residents with 477 residents of Gloucester, Peterborough, and Norwich, three towns with low reported death rates from chronic bronchitis. All subjects were male postal truck drivers aged 40 to 59. Compared to the subjects from the outlying towns, the London subjects exhibited more severe respiratory symptoms (including cough, phlegm, and dyspnea), reduced lung function (FEV1 and peak flow rate), and increased sputum production and purulence. The differences were more pronounced for subjects aged 50 to 59. The study controlled for age and smoking habits, so concluded that air pollution was the most likely cause of the observed differences.[61] More recent studies have shown that air pollution exposure from traffic reduces lung function development in children [62] and lung function may be compromised by air pollution even at low concentrations.[63] Air pollution exposure also cause lung cancer in non smokers.

It is believed that much like cystic fibrosis, by living in a more urban environment serious health hazards become more apparent. Studies have shown that in urban areas patients suffer mucus hypersecretion, lower levels of lung function, and more self-diagnosis of chronic bronchitis and emphysema.[64]

Cancer[edit]

A review of evidence regarding whether ambient air pollution exposure is a risk factor for cancer in 2007 found solid data to conclude that long-term exposure to PM2.5 (fine particulates) increases the overall risk of non-accidental mortality by 6% per a 10 microg/m3 increase. Exposure to PM2.5 was also associated with an increased risk of mortality from lung cancer (range: 15% to 21% per 10 microg/m3 increase) and total cardiovascular mortality (range: 12% to 14% per a 10 microg/m3 increase). The review further noted that living close to busy traffic appears to be associated with elevated risks of these three outcomes --- increase in lung cancer deaths, cardiovascular deaths, and overall non-accidental deaths. The reviewers also found suggestive evidence that exposure to PM2.5 is positively associated with mortality from coronary heart diseases and exposure to SO2 increases mortality from lung cancer, but the data was insufficient to provide solid conclusions.[66] Another investigation showed that higher activity level increases deposition fraction of aerosol particles in human lung and recommended avoiding heavy activities like running in outdoor space at polluted areas.[67]

In 2011, a large Danish epidemiological study found an increased risk of lung cancer for patients who lived in areas with high nitrogen oxide concentrations. In this study, the association was higher for non-smokers than smokers.[68] An additional Danish study, also in 2011, likewise noted evidence of possible associations between air pollution and other forms of cancer, including cervical cancer and brain cancer.[69]

In December 2015, medical scientists reported that cancer is overwhelmingly a result of environmental factors, and not largely down to bad luck.[65] Maintaining a healthy weight, eating a healthy diet, minimizing alcohol and eliminating smoking reduces the risk of developing the disease, according to the researchers.[65]

Children[edit]

In the United States, despite the passage of the Clean Air Act in 1970, in 2002 at least 146 million Americans were living in non-attainment areas—regions in which the concentration of certain air pollutants exceeded federal standards.[70] These dangerous pollutants are known as the criteria pollutants, and include ozone, particulate matter, sulfur dioxide, nitrogen dioxide, carbon monoxide, and lead. Protective measures to ensure children's health are being taken in cities such as New Delhi, India where buses now use compressed natural gas to help eliminate the "pea-soup" smog.[71] A recent study in Europe has found that exposure to ultrafine particles can increase blood pressure in children.[72]

Infants[edit]

Ambient levels of air pollution have been associated with preterm birth and low birth weight. A 2014 WHO worldwide survey on maternal and perinatal health found a statistically significant association between low birth weights (LBW) and increased levels of exposure to PM2.5. Women in regions with greater than average PM2.5 levels had statistically significant higher odds of pregnancy resulting in a low-birth weight infant even when adjusted for country-related variables.[73] The effect is thought to be from stimulating inflammation and increasing oxidative stress.

A study by the University of York found that in 2010 exposure to PM2.5 was strongly associated with 18% of preterm births globally, which was approximately 2.7 million premature births. The countries with the highest air pollution associated preterm births were in South and East Asia, the Middle East, North Africa, and West sub-Saharan Africa.[74]

The source of PM 2.5 differs greatly by region. In South and East Asia, pregnant women are frequently exposed to indoor air pollution because of the wood and other biomass fuels used for cooking which are responsible for more than 80% of regional pollution. In the Middle East, North Africa and West sub-Saharan Africa, fine PM comes from natural sources, such as dust storms.[74] The United States had an estimated 50,000 preterm births associated with exposure to PM2.5 in 2010.[74]

A study performed by Wang, et al. between the years of 1988 and 1991 has found a correlation between Sulfur Dioxide (SO2) and total suspended particulates (TSP) and preterm births and low birth weights in Beijing. A group of 74,671 pregnant women, in four separate regions of Beijing, were monitored from early pregnancy to delivery along with daily air pollution levels of Sulfur Dioxide and TSP (along with other particulates). The estimated reduction in birth weight was 7.3 g for every 100 µg/m3 increase in SO2 and 6.9g for each 100 µg/m3 increase in TSP. These associations were statistically significant in both summer and winter, although, summer was greater. The proportion of low birth weight attributable to air pollution, was 13%. This is the largest attributable risk ever reported for the known risk factors of low birth weight.[75] Coal stoves, which are in 97% of homes, are a major source of air pollution in this area.

Brauer et al. studied the relationship between air pollution and proximity to a highway with pregnancy outcomes in a Vancouver cohort of pregnant woman using addresses to estimate exposure during pregnancy. Exposure to NO, NO2, CO PM10 and PM2.5 were associated with infants born small for gestational age (SGA). Women living <50meters away from an expressway or highway were 26% more likely to give birth to a SGA infant.[76]

"Clean" areas[edit]

Even in the areas with relatively low levels of air pollution, public health effects can be significant and costly, since a large number of people breathe in such pollutants. A 2005 scientific study for the British Columbia Lung Association showed that a small improvement in air quality (1% reduction of ambient PM2.5 and ozone concentrations) would produce $29 million in annual savings in the Metro Vancouver region in 2010.[77] This finding is based on health valuation of lethal (death) and sub-lethal (illness) affects.

Central nervous system[edit]

Data is accumulating that air pollution exposure also affects the central nervous system.[78]

In a June 2014 study conducted by researchers at the University of Rochester Medical Center, published in the journal Environmental Health Perspectives, it was discovered that early exposure to air pollution causes the same damaging changes in the brain as autism and schizophrenia. The study also shows that air pollution also affected short-term memory, learning ability, and impulsivity. Lead researcher Professor Deborah Cory-Slechta said that "When we looked closely at the ventricles, we could see that the white matter that normally surrounds them hadn't fully developed. It appears that inflammation had damaged those brain cells and prevented that region of the brain from developing, and the ventricles simply expanded to fill the space. Our findings add to the growing body of evidence that air pollution may play a role in autism, as well as in other neurodevelopmental disorders." Air pollution has a more significant negative effect on males than on females.[79][80][81]

In 2015, experimental studies reported the detection of significant episodic (situational) cognitive impairment from impurities in indoor air breathed by test subjects who were not informed about changes in the air quality. Researchers at the Harvard University and SUNY Upstate Medical University and Syracuse University measured the cognitive performance of 24 participants in three different controlled laboratory atmospheres that simulated those found in "conventional" and "green" buildings, as well as green buildings with enhanced ventilation. Performance was evaluated objectively using the widely used Strategic Management Simulation software simulation tool, which is a well-validated assessment test for executive decision-making in an unconstrained situation allowing initiative and improvisation. Significant deficits were observed in the performance scores achieved in increasing concentrations of either volatile organic compounds (VOCs) or carbon dioxide, while keeping other factors constant. The highest impurity levels reached are not uncommon in some classroom or office environments.[82][83]

Agricultural effects[edit]

In India in 2014, it was reported that air pollution by black carbon and ground level ozone had cut crop yields in the most affected areas by almost half in 2011 when compared to 1980 levels.[84]

Economic effects[edit]

Air pollution costs the world economy $5 trillion per year as a result of productivity losses and degraded quality of life, according to a joint study by the World Bank and the Institute for Health Metrics and Evaluation (IHME) at the University of Washington.[85][86][87] These productivity losses are caused by deaths due to diseases caused by air pollution. One out of ten deaths in 2013 was caused by diseases associated with air pollution and the problem is getting worse. The problem is even more acute in the developing world. "Children under age 5 in lower-income countries are more than 60 times as likely to die from exposure to air pollution as children in high-income countries."[85][86] The report states that additional economic losses caused by air pollution, including health costs and the adverse effect on agricultural and other productivity were not calculated in the report, and thus the actual costs to the world economy are far higher than $5 trillion.

Historical disasters[edit]

The world's worst short-term civilian pollution crisis was the 1984 Bhopal Disaster in India.[88] Leaked industrial vapours from the Union Carbide factory, belonging to Union Carbide, Inc., U.S.A. (later bought by Dow Chemical Company), killed at least 3787 people and injured from 150,000 to 600,000. The United Kingdom suffered its worst air pollution event when the December 4 Great Smog of 1952 formed over London. In six days more than 4,000 died and more recent estimates put the figure at nearer 12,000.[89] An accidental leak of anthrax spores from a biological warfare laboratory in the former USSR in 1979 near Sverdlovsk is believed to have caused at least 64 deaths.[90] The worst single incident of air pollution to occur in the US occurred in Donora, Pennsylvania in late October, 1948, when 20 people died and over 7,000 were injured.[91]

Alternatives to pollution[edit]

There are now practical alternatives to the principal causes of air pollution:

  • Areas downwind (over 20 miles) of major airports more than double total particulate emissions in air, even when factoring in areas with frequent ship calls, and heavy freeway and city traffic like Los Angeles.[92]Aviation biofuel mixed in with jetfuel at a 50/50 ratio can reduce jet derived cruise altitude particulate emissions by 50-70%, according to a NASA led 2017 study (however, this should imply ground level benefits to urban air pollution as well).[93]
  • Ship propulsion and idling can be switched to much cleaner fuels like natural gas. (Ideally a renewable source but not practical yet)
  • Combustion of fossil fuels for space heating can be replaced by using ground source heat pumps and seasonal thermal energy storage.[94]
  • Electric power generation from burning fossil fuels can be replaced by power generation from nuclear and renewables. For poor nations, heating and home stoves that contribute much to regional air pollution can be replaced by a much cleaner fossil fuel like natural gas, or ideally, renewables.
  • Motor vehicles driven by fossil fuels, a key factor in urban air pollution, can be replaced by electric vehicles. Though lithium supply and cost is a limitation, there are alternatives. Herding more people into clean public transit such as electric trains can also help. Nevertheless, even in emission-free electric vehicles, rubber tires produce significant amounts of air pollution themselves, ranking as 13th worst pollutant in Los Angeles.[95]
  • Biodigesters can be utilized in poor nations where slash and burn is prevalent, turning a useless commodity into a source of income. The plants can be gathered and sold to a central authority that will break it down in a large modern biodigester, producing much needed energy to use.
  • Induced humidity and ventilation both can greatly dampen air pollution in enclosed spaces, which was found to be relatively high inside subway lines due to braking and friction and relatively less ironically inside transit buses than lower sitting passenger automobiles or subways.[96]

Reduction efforts[edit]

There are various air pollution control technologies and strategies available to reduce air pollution.[97][98] At its most basic level, land-use planning is likely to involve zoning and transport infrastructure planning. In most developed countries, land-use planning is an important part of social policy, ensuring that land is used efficiently for the benefit of the wider economy and population, as well as to protect the environment.

Because a large share of air pollution is caused by combustion of fossil fuels such as coal and oil, the reduction of these fuels can reduce air pollution drastically. Most effective is the switch to clean power sources such as wind power, solar power, hydro power which don't cause air pollution.[99] Efforts to reduce pollution from mobile sources includes primary regulation (many developing countries have permissive regulations),[citation needed] expanding regulation to new sources (such as cruise and transport ships, farm equipment, and small gas-powered equipment such as string trimmers, chainsaws, and snowmobiles), increased fuel efficiency (such as through the use of hybrid vehicles), conversion to cleaner fuels or conversion to electric vehicles.

Titanium dioxide has been researched for its ability to reduce air pollution. Ultraviolet light will release free electrons from material, thereby creating free radicals, which break up VOCs and NOx gases. One form is superhydrophilic.[100]

In 2014, Prof. Tony Ryan and Prof. Simon Armitage of University of Sheffield prepared a 10 meter by 20 meter-sized poster coated with microscopic, pollution-eating nanoparticles of titanium dioxide. Placed on a building, this giant poster can absorb the toxic emission from around 20 cars each day.[101]

A very effective means to reduce air pollution is the transition to renewable energy. According to a study published in Energy and Environmental Science in 2015 the switch to 100% renewable energy in the United States would eliminate about 62,000 premature mortalities per year and about 42,000 in 2050, if no biomass were used. This would save about $600 billion in health costs a year due to reduced air pollution in 2050, or about 3.6% of the 2014 U.S. gross domestic product.[99]

Control devices[edit]

The following items are commonly used as pollution control devices in industry and transportation. They can either destroy contaminants or remove them from an exhaust stream before it is emitted into the atmosphere.

Schematic drawing, causes and effects of air pollution: (1) greenhouse effect, (2) particulate contamination, (3) increased UV radiation, (4) acid rain, (5) increased ground level ozone concentration, (6) increased levels of nitrogen oxides.
This video provides an overview of a NASA study on the human fingerprint on global air quality.
Beijing air on a 2005-day after rain (left) and a smoggy day (right)

0 Replies to “Air Pollution Essay Wikipedia En”

Lascia un Commento

L'indirizzo email non verrà pubblicato. I campi obbligatori sono contrassegnati *